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Abstract

Red porgy (Pagrus pagrus) is a reef-associated, economically-important, winter-spawning,

protogynous Sparidae species that appears to have declined in abundance in recent years

along the southeast United States Atlantic coast. We used spatially-explicit generalized

additive models built with fishery-independent chevron trap (1990–2021) and video data

(2011–2021) to quantify the ways in which red porgy relative abundance and mean size var-

ied across temporal, spatial, environmental, and habitat variables. Mean red porgy relative

abundance from traps declined by 77% between 1992 and 2021, and declines were similarly

large (69%) on video between 2011 and 2021. The largest two-year decline in relative abun-

dance occurred early in the COVID-19 pandemic (2019–2021)– 32% in traps and 45% on

video–despite already low abundance. Highest red porgy relative abundance from traps and

video occurred in deep areas (i.e., 60–100 m) between southern North Carolina and north

Georgia, and red porgy preferred low relief but continuous hardbottom habitats (i.e., pave-

ment). We confirmed recent low recruitment of red porgy in the region based on the large

increase in mean length (29%) and severe (~99%) declines of juvenile red porgy caught

over the 32-year trap survey. Evidence suggests that recruitment failure is partially or mostly

responsible for red porgy abundance declines, and, moreover, the regulation of harvest is

unlikely to achieve sustainable management goals until recruitment increases.

Introduction

Accurate and precise information about relative abundance is a critical component of fish

stock assessments [1]. Typically, there are two types of relative abundance estimates that can

be included in stock assessments: those from fishery-dependent or fishery-independent data

sources. Fishery-dependent data includes catch-per-unit-effort information from the fishing

industry itself and are generally less expensive to collect, but there are many examples where

fishery-dependent catch-per-unit-effort data does not reflect relative abundance due to
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hyperstability, spatially-variable fishing effort, time or area fishery closures, or unreliable data

collection [2–4].

Fishery-independent data are collected from scientific surveys and are typically not subject

to the same drawbacks as fishery-dependent data, so the trends from survey data are consid-

ered more reliable than from fishery-dependent sources [5,6]. Trawls are the most common

survey gear for fishes occupying softbottom habitats, but trawls cannot be used to sample fish

associated with rugose reef habitats. Instead, reef-associated fish species have been surveyed

with a wide variety of alternative gears such as underwater visual census, hook-and-line, long-

lines, crewed or uncrewed underwater vehicles, traps, or underwater video [7–12]. Surveys for

reef-associated fishes using these diverse gears have provided valuable information on trends

in relative abundance that have been used to support efforts to sustainably manage myriad

important species.

Red porgy (Pagrus pagrus) is a reef-associated fish species that has been surveyed scientifi-

cally for decades using traps and more recently video along the southeast United States Atlan-

tic coast (hereafter, SEUS) [13]. Red porgy is a protogynous hermaphroditic Sparidae species

that has been targeted by fishers for many years in the SEUS [14,15]. Vaughan and Prager [16]

documented a substantial increase in fishing mortality and a decline in spawning potential

ratio for red porgy in the SEUS between the 1970s and 1990s, with resulting declines in bio-

mass of 89% and recruitment of 97% over the same time period. The most recent stock assess-

ment of red porgy, which used long-term fishery-independent trap and video data, indicated

that the stock was still overfished and undergoing overfishing [17]. Moreover, Smart et al. [18]

analyzed long-term trap data to show that adult and recruit abundances were both declining

throughout the 2010s. Because of the multispecies nature of the fishery for reef fishes [18] and

the high spatial overlap of red porgy with many other targeted reef fishes in the SEUS [19],

bycatch and discard mortality continue to remove red porgy from the population even with

strict management regulations. Expected recovery has not been seen in the red porgy popula-

tion, indicating factors besides fishing pressure could be at play.

Here we provide detailed analyses of long-term (32-year) fishery-independent trap and

video survey data for red porgy in the SEUS to address the following three specific objectives.

Our first objective was to quantify the temporal changes in relative abundance of red porgy in

the SEUS using long-term, spatially-explicit trap (1990–2021) and video data (2011–2021).

Our second objective was to determine the spatial patterns in relative abundance of red porgy

in the SEUS and how red porgy relative abundance varied across environmental and habitat

variables. Given the observed declines of red porgy over time (see Results), our third objective

was to determine whether declines in abundance were partially or completely due to persis-

tently low recent recruitment. These results build upon the previous work of Smart et al. [18]

and others to improve our understanding of the temporal and spatial dynamics of red porgy in

the SEUS as managers evaluate novel ways to manage this species, given that traditional man-

agement measures like size and bag limits do not appear to be achieving the desired results.

Materials and methods

Ethics statement

Data collected for this study was authorized via Scientific Research Permits issued by the

Administrator of the Southeast Regional Office of the National Marine Fisheries Service,

National Oceanic and Atmospheric Administration, United States Government. These Scien-

tific Research Permits covered all areas and organisms sampled in this study. All research fol-

lowed the guidelines of the U.S. Government Principles for the Utilization and Care of
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Vertebrate Animals Used in Testing, Research, and Training (https://olaw.nih.gov/policies-

laws/phs-policy.htm).

Study area

The spatial footprint for this study extended from Cape Hatteras, North Carolina, in the north

to St. Lucie Inlet, Florida, in the south and included continental shelf, shelf-break, and upper

slope habitats (total area ~100,000 km2; Fig 1). The seafloor in this region is primarily com-

posed of unconsolidated mud and sand substrate, but hardbottom temperate reef habitats are

interspersed throughout the region [20]. These patches of reef habitat are highly variable, rang-

ing from flat limestone pavement often covered by a veneer of sand to high-relief rocky ledges

[21]. Red porgy associate with these patches of hardbottom [18,22] and were the focus of sam-

pling in this study.

Data collection

We used chevron trap and video data collected by the Southeast Reef Fish Survey (SERFS) for

this study. SERFS is composed of three different entities that work together collaboratively to

sample reef fishes in the SEUS. The first is the Marine Resources Monitoring, Assessment, and

Prediction (MARMAP) program, housed at the South Carolina Department of Natural

Resources, which has been sampling reef fishes with chevron traps in the region since 1990.

The second is the Southeast Area Monitoring and Assessment Program, South Atlantic Region

(SEAMAP-SA) Reef Fish Complement, which is also based at SCDNR and has sampled in the

SEUS since 2009. The third is the Southeast Fishery-Independent Survey of the National

Marine Fisheries Service, which was created in 2010 to increase sampling in the region and

incorporate underwater video into the overall SERFS survey.

SERFS used a simple random sampling design to select stations for sampling each year

from a sampling frame composed of known hardbottom habitat. A portion of stations from

the sampling frame were selected for sampling each year, and the number of stations available

in the sampling frame has increased over time as more patches of hardbottom habitats have

been discovered. Most of the stations included in our analyses were randomly selected, but

some stations not selected for sampling were sampled opportunistically in order to increase

the sampling efficiency during research cruises. Moreover, some new hardbottom stations

were discovered and sampled each year and were included in our analyses if hardbottom was

present. Sampling occurred on the R/V Palmetto, R/V Savannah, NOAA Ship Nancy Foster,
NOAA Ship Pisces, and NOAA Ship SRVx Sand Tiger during daylight hours between the

spring and fall each year (Table 1).

Baited chevron traps (aka arrowhead or Madeira traps) have been deployed by SERFS since

1990 in a standardized way to sample reef fish species in the SEUS. Chevron traps used in this

study were shaped like an arrowhead, were constructed from 3.4 × 3.4 cm wire mesh, and were

1.7 × 1.5 × 0.6 m in size, with a total volume of 0.91 m3 [7,23]. Chevron traps were baited with

24 menhaden (Brevoortia spp.), four on each of four stringers and eight placed loosely inside

the trap. Each trap was deployed individually and was attached with a line to two surface

buoys for retrieval. Target soak time was 90 min for each trap, and the minimum distance

between traps within a given year was 200 m to provide independence between traps. Red

porgy trap catch-per-unit-effort was calculated as the number of individuals caught per trap.

Chevron trap samples were removed from our analyses if the validity of the sample was ques-

tionable for any reason such as evidence that the trap was dragging or bouncing or any infor-

mation was missing for the sample.

PLOS ONE Low recruitment of red porgy

PLOS ONE | https://doi.org/10.1371/journal.pone.0286078 July 5, 2023 3 / 24

https://olaw.nih.gov/policies-laws/phs-policy.htm
https://olaw.nih.gov/policies-laws/phs-policy.htm
https://doi.org/10.1371/journal.pone.0286078


SERFS began attaching underwater video cameras to chevron traps region-wide in 2011 to

collect additional information on reef fish temporal and spatial distributions [24]. Two cam-

eras have been attached to chevron traps since 2011: one over the trap mouth that was used to

count fish and quantify habitat and one over the trap nose to quantify habitat in the opposite

direction. In 2011–2014, Canon Vixia HF-S200 video cameras in Gates HF-S21 housings were

attached over the trap mouth to count fish and either GoPro Hero or Nikon Coolpix S210/

S220 were attached over the trap nose. From 2015–2021, GoPro Hero 3+/4 cameras were used

Fig 1. Heat maps of red porgy (Pagrus pagrus) trap catch, video counts, total length, and juvenile trap catches. (A)

Mean log-transformed trap catch of all red porgy (Pagrus pagrus; 1990–2021), (B) mean log-transformed video

SumCount of all red porgy (2011–2021), (C) mean total length (mm) of red porgy caught in traps (1990–2021), and

(D) mean log-transformed trap catch of juvenile (< 290 mm total length) red porgy (1990–2021). Gray cells show areas

where sampling occurred but no red porgy were caught in traps or observed on video, and colored cells show mean

values across all traps or videos within that cell.

https://doi.org/10.1371/journal.pone.0286078.g001
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over the trap mouth and nose. Videos were removed from our analyses if they were out of

focus, dark, or did not record for any reason. Thus, video data were available from 2011 to

2021 and trap data were available from 1990 to 2021; note that no sampling occurred in 2020

due to the coronavirus-19 pandemic.

Relative abundance of red porgy on video was calculated using a derivation of the Mean-

Count approach [25]. Fish are commonly counted on videos using the MaxN approach [26],

which is the maximum number of individuals of a given species observed in a single video

frame, but MaxN can be nonlinearly related to true abundance for some species [25,27]. Scho-

bernd et al. [25] instead recommended using the MeanCount metric, which is the mean num-

ber of individuals of a given species counted across a series of snapshots within a video. For

Table 1. Annual sampling information for the 32-year chevron trap and video survey by the Southeast Reef Fish

Survey along the southeast United States Atlantic coast.

Year Trap N Video N Mean depth (m; range) Mean latitude (˚N; range)

1990 302 0 33 (16–91) 32.5 (30.4–33.8)

1991 257 0 34 (16–93) 32.6 (30.8–34.6)

1992 286 0 33 (16–59) 32.8 (30.4–34.3)

1993 354 0 35 (16–94) 32.5 (30.4–34.3)

1994 332 0 39 (15–94) 32.3 (30.7–33.8)

1995 291 0 35 (16–59) 32.2 (29.9–33.7)

1996 318 0 36 (14–94) 32.5 (30.0–34.3)

1997 327 0 38 (15–94) 32.2 (27.9–34.6)

1998 341 0 38 (15–93) 32.2 (27.4–34.6)

1999 210 0 36 (15–57) 31.9 (27.3–34.6)

2000 248 0 37 (15–91) 32.2 (29.0–34.3)

2001 223 0 40 (15–91) 32.3 (27.9–34.3)

2002 221 0 39 (15–94) 31.8 (27.9–34.0)

2003 202 0 41 (16–92) 32.0 (27.4–34.3)

2004 248 0 41 (15–93) 32.3 (30.0–34.0)

2005 276 0 40 (16–71) 32.0 (27.3–34.3)

2006 274 0 39 (16–94) 32.3 (27.3–34.4)

2007 310 0 40 (16–94) 32.1 (27.3–34.3)

2008 276 0 40 (15–92) 32.1 (27.3–34.6)

2009 404 0 37 (15–93) 32.2 (27.3–34.6)

2010 762 0 39 (15–93) 31.3 (27.3–34.6)

2011 721 580 41 (15–94) 30.9 (27.2–34.5)

2012 1173 1083 41 (15–98) 31.9 (27.2–35.0)

2013 1356 1221 38 (15–98) 31.3 (27.2–35.0)

2014 1469 1382 39 (16–98) 31.9 (27.2–35.0)

2015 1456 1405 40 (15–96) 31.9 (27.3–35.0)

2016 1482 1404 41 (16–99) 32.1 (27.2–35.0)

2017 1517 1424 41 (15–99) 32.0 (27.2–35.0)

2018 1727 1654 41 (16–98) 32.0 (27.2–35.0)

2019 1653 1545 40 (14–98) 32.0 (27.2–35.0)

2020 0 0 - -

2021 1904 1383 40 (16–99) 31.9 (27.2–35.0)

Overall 20920 13081 14–99 27.2–35.0

Trap N = number of chevron trap samples included in the analyses each year and Video N = number of video

samples included in the analyses each year.

https://doi.org/10.1371/journal.pone.0286078.t001
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our study, we used a closely related metric, SumCount, which was the sum of individuals of a

given species observed across a series of snapshots; SumCount is exactly proportional to Mean-

Count when the number of frames examined was the same [28]. SumCount was used instead

of MeanCount because some of the error distributions we examined (e.g., negative binomial,

Poisson) required count data. We began reading videos 10 minutes after the trap landed on

the bottom and counted red porgy on individual frames spaced every 30 seconds over a

20-min interval of time, for a total of 41 frames read in total. Any video with fewer than 41

frames read was excluded from the analyses.

We conducted a camera calibration study in 2014 to account for the two camera types used

to count red porgy in our study. A total of 143 traps were deployed with Canon and GoPro

cameras attached side-by-side over the trap mouth, and those resulting videos were read using

SumCount at the exact same times on the two different camera types. Red porgy were observed

on 24 pairs of calibration videos, and, using a linear model, we determined that the Canon

cameras observed a mean of 41.8% fewer red porgy than GoPro cameras, similar to the differ-

ence in field-of-view between cameras. To account for the camera change, we therefore

reduced the video index in 2015–2021 by 41.8% to make years 2015–2021 comparable to and

consistent with data in 2011–2014.

We also recorded several variables at each station sampled in our study. We used the ship’s

global positioning system to determine the latitude and longitude of each sample and used the

vessel’s echosounder to determine depth (m). Bottom water temperature (˚ C) was measured

using a “conductivity-temperature-depth” cast deployed at each group of simultaneously

deployed traps. Trap soak time was measured as the elapsed time between the trap being

deployed off the back deck of the ship to the beginning of the trap retrieval process. Additional

variables were estimated from underwater videos. We recorded two habitat variables from

each of the two cameras attached to traps in our study [29]. The first was percent of the visible

substrate that was consolidated hardbottom, and a mean value was estimated across the two

cameras. The second was substrate relief, which was the maximum substrate relief visually esti-

mated from either camera and was measured in three categories: low (< 0.3 m), moderate

(0.3–1.0 m), or high (> 1.0 m). We also recorded the current direction as “away,” “sideways,”

or “towards” based on the movement of particles in the water relative to the video camera over

the trap mouth. Last, water clarity was classified as “high” if the horizon was visible in the dis-

tance, “moderate” if the substrate could be seen but not the horizon, and “low” if the substrate

could not be seen. Samples were excluded from analyses if any of these values were missing or

unknown.

Temporal and spatial patterns of red porgy

Our first objective was to estimate relative abundance of red porgy in the SEUS over time

using chevron trap (1990–2021) and underwater video (2011–2021) data. To address this

objective, we first summarized observed (unstandardized) trap and video data. For each year

of the study, we calculated the proportion of traps that caught red porgy and the proportion of

videos in which red porgy were observed (hereafter, “proportion positive”). Second, we calcu-

lated the mean trap catch (number of individuals per trap) and mean video SumCount of red

porgy for each year of the study. Third, to examine spatial patterns, we summarized observed

trap catches and video SumCounts of red porgy across the study area. To do this, we created a

0.1 × 0.1˚ grid over the study area, and plotted mean values within each cell. One potential

downside of analyzing observed data is that any changes in the annual spatial or temporal foot-

print of sampling or environmental conditions over time could be confounded with annual

changes in red porgy relative abundance [4,29].
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To address this concern, we also developed spatially explicit generalized additive models

(GAMs) to standardize trap catches or video counts with a number of predictor variables that

were hypothesized to influence red porgy trap catch or video counts. GAMs are regression

models that use local smoothers to fit potentially nonlinear relationships between response

and predictor variables, which are commonly observed in ecology [30]. Another benefit of

GAMs is that they can fit a number of different error distributions [31].

Our first GAM related the trap catch of red porgy to six predictor variables. These predictor

variables were year (year; 1990–2021), depth (depth, m), bottom water temperature (temp, ˚

C), day of the year (doy), trap soak time (dur; min), and position (pos). We excluded trap sam-

ples with soak times less than 50 min and greater than 150 min, as well as samples greater than

100 m deep, due to low sample sizes. Position was a bivariate smooth predictor that was cre-

ated using the latitude and longitude of the sample [32]. No predictor variables exhibited mul-

ticollinearity based on the variance inflation factors [33].

Our first trap catch GAM was coded as:

y ¼ f ðyearÞ þ sðdepthÞ þ sðtempÞ þ sðdoyÞ þ sðdurÞ þ sðposÞ; ð1Þ

where y is the trap catch of red porgy, year is year of the sample, depth is bottom depth of the

sample, temp is the bottom temperature, doy is day of the year, dur is trap soak time, pos is the

two-dimensional position variable, f is a categorical function, and s is a cubic spline

(smoothed) function. All GAMs were coded and analyzed in R version 4.1.1 [34] using the

mgcv library 1.8–23 [35].

We compared numerous error distributions and data transformations to identify models

that exhibited the best fit. We examined Gaussian, gamma, Tweedie, Poisson, and negative

binomial models with one of three possible data transformations of the response variable:

none, fourth root, or log. The best fitting trap catch model, based on various model diagnostics

using the “gam.check” function, was a Gaussian error distribution with a log-transformation

of red porgy trap catch, so it was selected and used. This and all subsequent GAMs met

assumptions of normality and constant variance. Note that the degree of flexibility in

smoothed covariates was determined by the built-in algorithm in the mgcv library.

We then compared the full model containing all six predictor variables to reduced models

that contained fewer predictor variables. We used Akaike’s information criterion (AIC) for

model selection, which identified the most parsimonious model that maximizes fit with the

fewest parameters possible [36]. Models with the lowest AIC values were considered the best

model in the set; we used ΔAIC for all reporting, which was a measure of each model relative

to the best model in the set. Best models had a ΔAIC = 0, and other models have ΔAIC > 0.

Generally, models with ΔAIC values of less than 2 are similarly supported by the data, and

those with ΔAIC values of greater than 2 have less support [36].

We also examined relationships between response and individual predictor variables that

were included in the final (best) model. We were principally interested in extracting the year

effect from the model, but we addressed our second objective by quantifying how red porgy

trap catches were related to other predictor variables to determine habitat use, spatial distribu-

tion patterns, and how their catches might be influenced by soak time. To extract predictor

variable plots, we used the best GAM (based on ΔAIC) to predict red porgy trap catches at

average values of all other predictor variables. Year is a categorical variable, so when predicting

the effects of other predictor variables, the year 2000 was chosen (haphazardly), but note that

predictor variable effects were unaffected by the choice of year. These predictor variable plots

show mean effects and 95% confidence intervals. We also used our spatially explicit GAM to

predict red porgy trap catches across the study area at a spatial resolution of 90 m. For this
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plot, we used the latitude, longitude, and depth of each cell and predicted trap catches using

average values for all other predictor variables in the model. This plot predicts red porgy rela-

tive abundance across the SEUS.

We next determined the relative influence of each individual predictor variable to explain-

ing variability in red porgy trap catch. To accomplish this, we estimated the deviance explained

by GAMs that included each predictor variable by itself, so that objective comparisons could

be made about the relative importance of each predictor variable in the best model.

Our second GAM related video SumCount of red porgy to nine predictor variables. We

pursued video analyses here in addition to the trap analyses above because, despite the time

series being shorter for video, red porgy are observed on video more frequently than they are

caught in chevron traps [24], so video-based relative abundance may be estimated with greater

precision than with traps. All predictor variables included in the trap model above were

included in the video model except trap soak time (dur), since that predictor was not relevant

to video data collection. Four additional variables were included in the video model: percent

hardbottom (ph), maximum substrate relief (rel), current direction (cur), and water clarity

(wc). Again, no predictor variables exhibited multicollinearity based on the variance inflation

factors [33].

Our video GAM was coded as:

y ¼ f ðyearÞ þ sðdepthÞ þ sðtempÞ þ sðdoyÞ þ sðposÞ þ sðphÞ þ f ðrelÞ þ f ðcurÞ þ f ðwcÞ; ð2Þ

where y is the video SumCount of red porgy, year is year of the sample, depth is bottom depth

of the sample, temp is the bottom temperature, doy is day of the year, pos is the two-dimen-

sional position variable, ph is the percent hardbottom, rel is the maximum substrate relief, cur
is the current direction, wc is the water clarity, f is a categorical function, and s is a cubic spline

(smoothed) function. The best fitting video SumCount model was again a Gaussian error dis-

tribution with a log-transformation of red porgy video SumCount. We compared the full

model containing all predictor variables to reduced models that contained fewer predictor var-

iables using ΔAIC.

We examined relationships between red porgy video SumCount and individual predictor

variables that were included in the final (best) video model. We used the final video GAM to

predict red porgy video SumCounts at average values of all other predictor variables. For pre-

dictions using categorical variables, we used the year 2015, a maximum substrate relief of

‘moderate’, and a current direction of ‘away.’ We also predicted red porgy video SumCount

across the study area using the latitude, longitude, and depth of each cell and average values of

all other covariates, as well as the categorical variable levels as described above.

Recruitment failure hypothesis

The third objective of our work was to determine if recruitment failure was responsible for the

decline in red porgy relative abundance (see Results below). We tested the recruitment failure

hypothesis with two additional GAMs. The first tested whether the mean size of red porgy has

increased over time, as would be expected if a fish species was experiencing recruitment fail-

ure. Alternatively, fish size would be expected to become smaller over time if fishing was pri-

marily responsible for declines in relative abundance because most fisheries tend to have

minimum size limits and therefore target larger individuals [37].

The length GAM related the mean length of red porgy caught in traps (1990–2021) to vari-

ous predictor variables. Only traps that caught red porgy were included in the analysis. Here,

we calculated the mean total length of all red porgy caught in each trap and related that to

three predictor variables that we a priori hypothesized might influence red porgy mean length:
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year, depth, and position. Red porgy caught by SERFS were measured for fork length or total

length over time, so we converted fork lengths to total lengths using the equation provided by

Potts and Manooch [38]. We weighted trap samples by the total number of red porgy caught

in each trap, so that mean length based on many fish in a trap was weighted more heavily than

a mean length from a single fish caught in the trap. The best fitting GAM included a Gaussian

error distribution and no data transformation.

The last GAM addressed the recruitment failure hypothesis in a somewhat different way by

specifically modeling the relative abundance of juvenile red porgy caught in chevron traps

(1990–2021). Previous work has shown that the length at which red porgy reach 50% maturity

is 290 mm total length [39], so we used that length cutoff to define juveniles here. This last

GAM related the trap catch of juvenile red porgy to the same six predictor variables as were

included in Eq 1 above. The best fitting juvenile GAM model used a Tweedie error distribu-

tion, likely due to increased zero inflation, and a log transformation. If recruitment failure was

occurring, we hypothesized that the rate of decline of juvenile red porgy in the chevron trap

survey would be greater than the decline observed for all red porgy caught in traps, e.g., [40].

Results

Over the 32-year time span of chevron trap sampling, 20,920 trap samples were included in

our analyses, ranging from a low of 202 chevron traps in 2003 to a high of 1,904 in 2021

(Table 1). A total of 13,081 videos were included in the analyses from 2011 to 2021, ranging

from a low of 580 in 2011 to 1,654 in 2018. The depth distribution of samples was relatively

consistent across the study, while the latitude range of sampling expanded somewhat over

time (Table 1). A benefit of including depth and position in our GAMs is that they standardize

for modest changes in the spatial distribution of sampling over time.

Temporal and spatial patterns of red porgy

The observed proportion of trap and video samples having a positive trap catch or video obser-

vation of red porgy declined over the study (Fig 2). For traps, the proportion positive was

around 0.5 in the early 1990s, but declined to approximately 0.2 by the late 2010s and to

around 0.1 by 2021 (83% decline overall). Although a shorter time series, the proportion posi-

tive for red porgy on video also declined from around 0.4 in the early 2010s to just over 0.1 by

2021 (70% decline). The biggest change in proportion positive for red porgy occurred between

2019 and 2021, where declines in relative abundance were 49% in traps and 54% on video

(Fig 2).

A total of 32,181 red porgy were caught in chevron traps in this study. Mean observed

(unstandardized) trap catch and video SumCounts declined 89% and 73% respectively over

the study (Fig 2). Mean trap catch (number of red porgy individuals caught per trap) was high

and variable from the 1990s through the late 2000s, but has been lower and declining since the

late 2000s and especially low in 2021. Mean video SumCount of red porgy has been variable in

the 2010s, but was substantially lower in 2021 compared to earlier years (Fig 2).

Observed chevron trap catches of red porgy were higher in the northern part of the study

area, especially in deeper waters, while catch rates were generally lower further south in Geor-

gia and Florida (Fig 1A). Observed video SumCounts of red porgy displayed a similar distribu-

tion, being higher in the northern areas of the study area (i.e., North and South Carolina) and

lower in Georgia and Florida, aside from some higher video counts in some cells off Cape

Canaveral, Florida (Fig 1B).

The best fitting GAM for red porgy trap catch was the full model that included all six pre-

dictor variables and explained 26.9% of the deviance in trap catch (Table 2). Spatial position

PLOS ONE Low recruitment of red porgy

PLOS ONE | https://doi.org/10.1371/journal.pone.0286078 July 5, 2023 9 / 24

https://doi.org/10.1371/journal.pone.0286078


explained the most variability in trap catch, followed by depth and year; trap soak time, bottom

water temperature, and especially day of the year explained very little deviance (Table 3). The

second-best trap catch model that excluded bottom water temperature had a ΔAIC value of

6.8, suggesting much less support based on the data. The best fitting GAM for red porgy video

SumCount included all predictor variables except water clarity, and this best model explained

35.9% of the deviance in video counts (Table 2). Similar to the trap catch model, position and

depth explained the most variability in video SumCount, followed by current direction, year,

and percent hardbottom; bottom water temperature, substrate relief, and day of the year

explained very little of the variation in video counts (Table 3). The second-best video count

model was the full model that had a ΔAIC value of 3.1, suggesting less support.

Standardized red porgy trap catches and video SumCounts declined over the study period,

especially since the mid-2000s (Fig 3). In terms of standardized trap catches of red porgy, the

last four years in the time series (2017–2021) were the lowest values over the 32-year time

series. Red porgy declined by 77% between the year of highest mean red porgy relative abun-

dance (1992) and the year of lowest mean red porgy relative abundance (2021), and 32% of

that decline occurred between 2019 and 2021. Precision around annual relative abundance

estimates was high, with a mean annual coefficient of variation of 0.08 (annual range = 0.06–

0.11). Standardized video SumCounts of red porgy declined nearly linearly by 69% since video

data collection began in 2011, and the largest decline occurred between 2019 and 2021 (45%).

The precision of video-based relative abundance estimates was high (mean coefficient of varia-

tion = 0.08; range = 0.07–0.15). There was a strong correlation between standardized trap

catch and video SumCounts (r = 0.80) during the 2011 to 2021 time period when both sets of

data were collected, although video SumCounts appeared to decline slightly faster than trap

catch (Fig 3).

There were strong spatial patterns in standardized red porgy trap catches and video Sum-

Counts in the SEUS, as evidenced by the spatial position predictor variable being the most

important variable in both trap and video GAMs (Table 3, Fig 4). The spatial predictions from

Fig 2. Red porgy (Pagrus pagrus) percent occurrence, mean trap catch, and mean video counts from traps and

video. (A) Proportion of trap or video samples capturing or observing red porgy (Pagrus pagrus) from the Southeast

Reef Fish Survey along the southeast United States Atlantic coast. (B) Mean trap catch (individuals per trap) or mean

video SumCount of red porgy. Chevron trap data were collected from 1990 to 2021, while videos were collected from

2011 to 2021. Note no sampling occurred in 2020.

https://doi.org/10.1371/journal.pone.0286078.g002
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trap and video models were very similar, both indicating high trap catches and video counts in

the deeper areas of southern North Carolina and South Carolina. Trap catches and video Sum-

Counts were low in northern North Carolina, Florida, and inshore areas across the entire

study area. The biggest difference between trap and video spatial predictions was the slightly

higher predictions in some inshore areas from the trap GAM compared to the video GAM

(Fig 4).

Table 2. Model selection for the spatially explicit generalized additive models of trap catch of all red porgy (Pagrus pagrus; 1990–2021), counts of all red porgy on

video (2011–2021), mean length of red porgy (1990–2021), or trap catch of juvenile red porgy only (1990–2021) from data collected by the Southeast Reef Fish Sur-

vey along the southeast United States Atlantic coast.

Model ΔAIC DE f(year) s(depth) s(temp) s(doy) s(dur) s(pos) f(cur) f(wc) f(rel) s(ph)

Trap—all fish

Full 0.0 26.9 30*** 2.0*** 8.6* 8.3*** 1.8* 28.9*** na na na na

Full–temp 6.8 26.8 30*** 2.0*** ex 8.3*** 1.8* 28.9*** na na na na

Full–dur 7.0 26.9 30*** 2.0*** 8.6* 8.3*** ex 28.9*** na na na na

Full–temp–dur 13.8 26.8 30*** 2.0*** ex 8.3*** ex 28.9*** na na na na

Video—all fish

Full–wc 0.0 35.9 9*** 2.0*** 3.9*** 1.0*** na 28.9*** 2*** ex 2*** 7.2***
Full 3.1 35.9 9*** 2.0*** 3.8*** 1.0*** na 28.9*** 2*** 2 2*** 7.2***
Full–wc–temp 19.6 35.8 9*** 2.0*** ex 2.9*** na 28.9*** 2*** ex 2*** 7.2***
Full–temp 23.1 35.8 9*** 2.0*** ex 3.0*** na 28.9*** 2*** 2 2*** 7.2***
Mean length

Full 0.0 45.0 30*** 2.0*** na na na 28.7*** na na na na

Full–depth 54.4 44.5 30*** ex na na na 28.7*** na na na na

Full–pos 930.2 35.2 30*** 2.0*** na na na ex na na na na

Full–depth–pos 1185.2 32.3 30*** ex na na na ex na na na na

Trap—juveniles only

Full–dur–doy 0.0 44.8 30*** 8.7*** 1.0* ex ex 28.2*** na na na na

Full–dur 0.7 44.8 30*** 8.7*** 1.0 1.0 ex 28.2*** na na na na

Full–doy 2.5 44.8 30*** 8.7*** 1.0* ex 1.9 28.2*** na na na na

Full 3.0 44.8 30*** 8.7*** 1.0 1.0 2.0 28.2*** na na na na

Full models include all model covariates, while the minus sign followed by a covariate name indicates that covariate was excluded from the full model. Degrees of

freedom are shown for factor (f) terms and estimated degrees of freedom are shown for smoothed terms (s). Asterisks denote significance at the following alpha levels:

*0.05, **0.01, ***0.001; ΔAIC = delta Akaike information criterion (best model ΔAIC = 0.0); DE = percent deviance explained by the model; y = year of the sample;

depth = bottom depth; temp = bottom water temperature; doy = day of the year; dur = trap soak time; pos = position of the sample; cur = current direction relative to the

video camera; wc = water clarity; rel = maximum substrate relief; ph = percent of visible bottom substrate that was hardbottom; ex = covariate was excluded from that

particular model based on ΔAIC; and na = covariate was not applicable to that particular model.

https://doi.org/10.1371/journal.pone.0286078.t002

Table 3. Deviance explained by each model covariate in generalized additive models built on data collected by the Southeast Reef Fish Survey along the southeast

United States Atlantic coast.

Model Best model year depth temp doy dur pos cur wc rel ph
Trap–all fish 26.9 6.0 8.3 1.0 0.4 1.2 23.0 - - - -

Video–all fish 35.9 2.1 11.1 1.3 0.7 - 30.9 2.3 - 1.0 1.9

Mean length 45.0 32.4 19.3 - - - 26.7 - - - -

Trap–juveniles only 44.8 19.6 11.8 1.1 - - 28.9 - - - -

Deviance explained by each covariate was calculated from models that only included each single covariate by itself, and the deviance explained for the best model was

taken from final models included in Table 2. Empty cells imply that covariate was not included in the best model, so no deviance explained is provided.

https://doi.org/10.1371/journal.pone.0286078.t003
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Depth explained much more variability in red porgy trap catch than day of the year, bottom

temperature, or trap soak time (Table 3, Fig 5). There was a strong positive relationship

between red porgy trap catch and depth, with the lowest standardized trap catches found less

than 50 m deep and the highest standardized trap catches found in the deepest water sampled

in our study (i.e., 80–100 m deep). Generally, red porgy trap catches declined throughout the

summer, were weakly related to bottom water temperature, and were slightly positively related

to trap soak time (Fig 5).

Depth was also strongly positively related to red porgy video SumCounts, while the remain-

ing video covariates were of lesser importance (Table 3, Fig 6). Similar to the depth effect in

trap GAM, red porgy video SumCounts were low at 15–60 m deep but increased substantially

and positively from 60 to 100 m deep. There was a weak negative relationship between red

porgy video SumCount and day of the year and a weak positive relationship with bottom water

temperature. Although red porgy video SumCounts were positively related to percent hardbot-

tom, they were negatively related to maximum substrate relief. Last, red porgy were more likely

to be counted on video when the camera was facing down-current and less likely to be counted

when the camera was facing up-current.

Recruitment failure hypothesis

Observed mean lengths of red porgy were variable over space but were generally higher in

deeper waters and lower inshore or in mid-continental shelf waters between North Carolina

Fig 3. Standardized trap catches and video counts of red porgy (Pagrus pagrus) using spatially explicit generalized

additive models from the Southeast Reef Fish Survey along the southeast United States Atlantic coast. Points

indicate mean values (traps = blue; video = green) and shaded areas indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0286078.g003
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and Florida (Fig 1C). Most juvenile red porgy (< 290 mm total length) were caught in mid-

continental shelf waters of North and South Carolina, but were highly patchy and variable

across space (Fig 1D).

The full GAM relating the mean length of red porgy to three predictor variables was

selected over reduced models and explained 45.0% of the model deviance (Table 2). Each of

these three predictor variables explained a similar amount of model deviance, with year

explaining the most and depth explaining the least (Table 3). The second-best model excluded

depth but had a ΔAIC of 54.4, suggesting no support for this model (Table 2). The best GAM

describing the catch of juvenile red porgy included four predictor variables: year, depth, bot-

tom temperature, and spatial position; day of the year and trap soak time were excluded

(Table 2). This model explained 44.8% of the model deviance but was only 0.7 AIC units better

than the second-best model that only excluded trap soak time. For the best juvenile red porgy

GAM, spatial position explained the most deviance, followed by year, depth, and bottom water

temperature (Table 3).

Fig 4. Predicted trap catch of the number of individuals (A; 1990–2021) and video SumCounts (B; 2011–2021) of red porgy (Pagrus pagrus) from the Southeast

Reef Fish Survey along the southeast United States Atlantic coast. Predictions were based on the spatial position and depth of each cell at average values of all

other model covariates using spatially explicit generalized additive models. Gray isobaths are 30, 50, and 100 m.

https://doi.org/10.1371/journal.pone.0286078.g004
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Standardized mean length of red porgy generally increased over the 32-year study (Fig 7).

Standardized mean length was approximately 300 mm total length in the early 1990s, but

increased to ~340 mm total length by the 2000s and ~360 mm total length by the 2010s, an

overall increase of 29%. Standardized mean total length of red porgy was shortest in shallow

water (< 30 m deep) and highest in 60–80 m deep (Fig 7). Standardized mean length was high-

est in deeper waters across the study area, but also inshore in North Carolina and northern

South Carolina (Fig 8). Standardized mean length was lowest in northern North Carolina and

inshore in Florida and Georgia.

Standardized trap catches of juvenile red porgy were high but variable in the early 1990s

and lower through the 2000s, but catches of juvenile red porgy mostly disappeared from the

Fig 5. Standardized trap catch of red porgy (Pagrus pagrus) as a function of (A) depth (m), (B) day of the year, (C)

bottom temperature (˚C), or (D) soak time (min) using spatially explicit generalized additive models from data

collected by the Southeast Reef Fish Survey along the southeast United States Atlantic coast, 1990–2021. Thick black

lines are mean values at average values of all model covariates and shaded areas are 95% confidence intervals. Note the

varying y-axis range among panels.

https://doi.org/10.1371/journal.pone.0286078.g005

Fig 6. Standardized video SumCounts of red porgy (Pagrus pagrus) as a function of (A) current direction, (B) maximum substrate relief, (C) depth (m), (D)

day of the year, (E) bottom temperature (˚C), and (F) percent hardbottom using spatially explicit generalized additive models from data collected by the

Southeast Reef Fish Survey along the southeast United States Atlantic coast, 2011–2021. Red points or lines are mean values at average values of all model

covariates and shaded areas are 95% confidence intervals. Note the varying y-axis range among panels.

https://doi.org/10.1371/journal.pone.0286078.g006
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late 2000s through 2021 (Fig 9). Mean trap catch of juvenile red porgy declined by 99%

between the highest (1995) and lowest years (2018). Juvenile red porgy were mostly caught

between 30 and 40 m deep and again around 100 m deep, but note that the precision of those

deeper estimates was very low (Fig 9). There was also a weak relationship between the stan-

dardized trap catch of juvenile red porgy and bottom water temperature (Fig 9). The spatial

distribution of juvenile red porgy from the juvenile red porgy GAM was highest in mid- or

outer continental shelf habitats from southern North Carolina to Georgia and lowest inshore,

especially in Georgia and Florida (Fig 8).

Discussion

Using trap catches and video counts, we found that red porgy relative abundance has declined

severely over the last 30 years in the SEUS. While these declines are substantial, the decline in

trap catches of juvenile red porgy was much greater and mean length of red porgy increased

over the same time period, suggestive of recruitment failure occurring in red porgy over the

last two decades. Both chevron traps and underwater video sampled red porgy relative abun-

dance well in the SEUS, as evidenced by high precision of estimates, appropriate model diag-

nostics, strong correspondence between observed and predicted data, and consistency of

results between gears. Red porgy abundance has continued to decline in recent years despite

strict bag and size regulations and relatively low commercial and recreational landings. Taken

together, these results suggest that current minimum size and bag limits may be inadequate to

sustainably manage red porgy in the SEUS given that external forces appear to be limiting

recruitment in the region.

The decline of red porgy relative abundance estimated over our study period (69–77%) was

similar to previous findings. Vaughan and Prager [16] estimated an 89% reduction in

Fig 7. Standardized total length (mm) of red porgy (Pagrus pagrus) caught in chevron traps as a function of (A) year or (B) bottom depth (m) using spatially

explicit generalized additive models from data collected by the Southeast Reef Fish Survey along the southeast United States Atlantic coast, 1990–2021. Black

points or lines are mean values at average values of all model covariates and shaded areas are 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0286078.g007
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spawning stock biomass of red porgy in the SEUS from 3,570 t in 1979 to 397 t in 1997, sug-

gesting that red porgy relative abundance had already declined substantially before chevron

trapping for the present study began in 1990. Analyzing a subset of chevron trap data from the

present study, Smart et al. [18] used the Vector-Autoregressive Spatio-Temporal model

[41,42] to show that adult and recruit red porgy relative abundance was low in the most recent

years of the time series compared to the late 1990s. The most recent red porgy stock assessment

in the SEUS estimated declines in red porgy abundance by about 75% between the late 1970s

and the early 2000s, with additional declines during the 2010s [17]. Multiple sources of infor-

mation indicate red porgy have declined substantially since the 1990s, but severe declines in

abundance also preceded the time period of our study [15–17], suggesting that the decline of

red porgy relative abundance observed here is underestimated.

Recruitment failure appears to be at least partly responsible for the decline of red porgy

abundance in the SEUS. We documented a 99% decline in juvenile red porgy caught in chev-

ron traps over time, which is much greater than the decline in trap catch rates for all sizes of

red porgy in our study and similar to previous estimates [16–18,43]. We also documented a

Fig 8. Spatial predictions of total length (mm) and trap catch of juvenile (< 290 mm) red porgy (Pagrus pagrus) from the Southeast Reef Fish Survey

along the southeast United States Atlantic coast, 1990–2021. Predictions were based on the spatial position and depth of each cell at average values of all

other model covariates using spatially explicit generalized additive models. Gray isobaths are 30, 50, and 100 m.

https://doi.org/10.1371/journal.pone.0286078.g008
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29% increase in mean size of red porgy over time, which is consistent with a recruitment fail-

ure hypothesis and the opposite of what would be expected from severe overfishing, where

mean size generally declines [37,44,45]. It is possible that some of the increase in mean size of

red porgy was due to increased individual growth rates due to density dependence at low

abundance, although direct evidence for increased growth rates in recent years is lacking. Low

recruitment is not just limited to red porgy–some other economically important fish species in

the SEUS have also displayed lower than expected recruitment in recent years including red

grouper (Epinephelus morio), scamp (Mycteroperca phenax), black sea bass (Centropristis stri-
ata), and gag (Mycteroperca microlepis) [40,43].

The mechanism for why recruitment is limited for these species has not yet been identified,

but there are two main possibilities. The first is recruitment overfishing, where fishing reduces

spawning biomass to a level where reproductive output is limited due to Allee effects or egg or

sperm limitation from skewed sex ratios [46,47]. A second possibility is that the mortality of

eggs, larvae, or juveniles has increased. Some potential reasons mortality may have increased

on young fish include changes in winter-time environmental conditions [48,49], increased

predation by species such as lionfish (Pterois volitans) [50] or red snapper (Lutjanus campecha-
nus) [51], or the disappearance of food resources that support larval or juvenile red porgy.

There are currently no regional-scale surveys in the SEUS that consistently collect eggs, larvae,

or small juvenile reef fishes such as red porgy, making it difficult to determine the mechanism

for low recruitment. Identifying why low recruitment is occurring for red porgy and other eco-

nomically important species in the SEUS is critically important.

Despite already being at historically low levels of abundance, red porgy declined dramati-

cally between 2019 and 2021–32% in traps and 45% on video. The reason for this unusually

large decline in red porgy abundance is unclear but may be related to the COVID-19 pan-

demic. Recreational fishing effort appeared to increase in many places during the first year of

the COVID-19 pandemic [52,53], in part due to many first-time anglers [54]. In a tributary of

Lake Huron, for instance, angler exploitation rate of rainbow trout (Oncorhynchus mykiss)
decreased by half during lockdowns in early 2020 compared to before the pandemic, but an

eight-fold increase in exploitation quickly followed once travel restrictions were eased in the

fall of 2020 [55]. We are not aware of fishing effort trends in the SEUS during the COVID-19

pandemic, but it is possible that increased fishing effort for reef-associated fish species during

2020 and early 2021 contributed to further declines of red porgy either directly through reten-

tion or bycatch mortality [56,57]. But the disappearance of juvenile red porgy cannot likewise

be explained by an increase in fishing effort due to the COVID-19 pandemic because a

356-mm minimum size limit exists for red porgy in the region.

Red porgy adults and juveniles were not found homogenously throughout the SEUS.

Instead, adult red porgy were mostly encountered in deeper, outer continental shelf or shelf

break waters between southern North Carolina and Georgia, consistent with the findings of

previous studies [18,22,58]. In our study, there was a high degree of consistency between the

spatial predictions from trap and video GAMs, suggesting the predictions were tracking the

true spatial distribution of red porgy in the SEUS. Although red porgy were encountered

across a wide range of depths in our study, they strongly preferred deeper compared to shal-

lower water. Our results make sense in light of Manooch and Hassler [14] stating that red

Fig 9. Standardized trap catch of juvenile red porgy (Pagrus pagrus;< 290 mm) as a function of (A) year, (B) depth,

and (C) bottom temperature (˚C) using spatially explicit generalized additive models from data collected by the

Southeast Reef Fish Survey along the southeast United States Atlantic coast, 1990–2021. Solid points or thick black

lines are mean values at average values of all model covariates and shaded areas are 95% confidence intervals. Note the

varying y-axis range among panels.

https://doi.org/10.1371/journal.pone.0286078.g009
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porgy were commonly found at depths from 18 to 183 m throughout their range, with the

deepest individual collected in 280 m of water south of the Canary Islands [59]. In contrast,

Wheeler [60] suggested that red porgy were caught in depths of only up to 60 m in the Medi-

terranean Sea and Atlantic Ocean off north Africa.

There is a paucity of information on the spatial and depth distributions of juvenile red

porgy in the literature. We found juvenile red porgy in mid- to outer-continental shelf habitats

in 35–40 m of water between southern North Carolina and Georgia in our study, generally

inshore of adult distributions. Manooch [61] indicated that it was probable that young red

porgy were distributed inshore of adult populations, and he reported a young-of-the-year red

porgy captured in a trawl in 9 m of water off Charleston, South Carolina. Wheeler [60] noted

that young red porgy can also be caught near shore in the Mediterranean Sea. The discrepancy

in depth distributions among these studies may be partially explained by the specific age of the

sampled red porgy; age-0 and age-1 red porgy may occur in shallow water, as indicated by

Wheeler [60] and Manooch [61], but older juvenile red porgy may move into somewhat

deeper continental shelf waters by the time they become selected for by chevron traps (age 2 or

3) [17]. But note that Smart et al. [18] predicted that most red porgy recruits occur in outer

shelf waters between North Carolina and Georgia, somewhat deeper than we found in our

study. The relative scarcity of early juvenile red porgy in the SEUS is similar to other species in

the region like red snapper [62].

Red porgy are reef generalists and occur over a wide range of reef habitats in the SEUS

including rocky ledges, flat limestone pavement, and sandy habitats adjacent to reefs [14,22].

Yet red porgy did not use all seafloor habitats equally in our study. Instead, red porgy mainly

occupied habitats with high percent hardbottom and low substrate relief, suggesting that red

porgy tend to prefer continuous (i.e., pavement) habitats that lack vertical structure.

There were some drawbacks of our study. First, observational studies employing regression

techniques like ours are correlational in nature and therefore causation cannot be determined

or implied. Second, our sampling footprint expanded somewhat over time, particularly to the

south in 1997 and to the north in 2012. To avoid potential concerns with survey expansion

over time, we used a GAM that standardized for changes in the spatial footprint of the survey

so that our estimates of red porgy abundance were not confounded with changes in the sam-

pling distribution. Third, recruitment was so limited in recent years that the number of juve-

nile red porgy caught in chevron traps was small, which resulted in higher uncertainty around

GAM predictions. Fourth, we used the mean length of red porgy caught in chevron traps in

our length GAM, but using all fish lengths may be more informative; we elected for simplicity

over complexity. Last, our models explained 27–45% of the deviance among models, meaning

a majority of the model deviance for trap catch, video counts, or mean length remained unex-

plained. The spatial or temporal distribution of prey and predators of red porgy, social interac-

tions, or other unmeasured environmental or habitat variables might be responsible for the

remaining unexplained deviance.

Our study indicates that red porgy has experienced severe declines in abundance over the

last three decades, and given that significant declines occurred previous to our study [16], the

abundance of red porgy in the SEUS is likely at unprecedented low levels. The most recent

stock assessment for red porgy indicated that spawning stock biomass of red porgy in 2017

was approximately 20% of the level corresponding to maximum sustainable yield [17], and our

results suggest substantial declines of red porgy since that time between 2017 and 2021 (trap

GAM = 32% decline; video GAM = 45% decline). Given that recruitment failure of red porgy

is at least partially responsible for abundance declines, even the most drastic of management

measures such as a prohibition of harvest is unlikely to result in significant increases in abun-

dance until the low recruitment issue can be identified and remedied.

PLOS ONE Low recruitment of red porgy

PLOS ONE | https://doi.org/10.1371/journal.pone.0286078 July 5, 2023 20 / 24

https://doi.org/10.1371/journal.pone.0286078


Acknowledgments

We thank past and present SERFS staff members, numerous volunteers, and the captains and

crews of the NOAA Ship Nancy Foster, NOAA Ship Pisces, R/V Palmetto, R/V Savannah, and

SRVx Sand Tiger for data collection. Mention of trade names or commercial companies is for

identification purposes only and does not imply endorsement by the National Marine Fisher-

ies Service, NOAA. The scientific results and conclusions, as well as any views and opinions

expressed herein, are those of the authors and do not necessarily reflect those of any govern-

ment agency.

Author Contributions

Conceptualization: Nathan M. Bacheler, Nikolai Klibansky.

Data curation: Nathan M. Bacheler.

Formal analysis: Nathan M. Bacheler, Nikolai Klibansky, Walter J. Bubley, Tracey I. Smart.

Funding acquisition: Nathan M. Bacheler, Walter J. Bubley, Tracey I. Smart.

Investigation: Nathan M. Bacheler.

Methodology: Nathan M. Bacheler, Nikolai Klibansky, Walter J. Bubley.

Project administration: Nathan M. Bacheler.

Writing – original draft: Nathan M. Bacheler.

Writing – review & editing: Nathan M. Bacheler, Nikolai Klibansky, Walter J. Bubley, Tracey

I. Smart.

References

1. Pennington M, Stromme T. Surveys as a research tool for managing dynamic stocks. Fish Res. 1998;

37:97–106.

2. Harley SJ, Myers RA, Dunn A. Is catch-per-unit-effort proportional to abundance? Can J Fish Aquat Sci.

2001; 58:1760–1772.

3. Campbell RA. CPUE standardization and the construction of indices of stock abundance in a spatially

varying fishery using general linear models. Fish Res. 2004; 70:209–227.

4. Maunder MN, Punt AE. Standardizing catch and effort data: a review of recent approaches. Fish Res.

2004; 70:141–159.

5. Walters C, Maguire JJ. Lessons for stock assessment from the northern cod collapse. Rev Fish Biol

Fish. 1996; 6:125–137.

6. Kimura DK, Somerton DA. Review of statistical aspects of survey sampling for marine fisheries. Rev.

Fish. Sci. 2006; 14;245–283.

7. Collins MR. A comparison of three fish trap designs. Fish Res. 1990; 9:325–332.

8. Jones DT, Wilson CD, De Robertis A, Rooper CN, Weber TC, Butler JL. Evaluation of rockfish abun-

dance in untrawlable habitat: combining acoustic and complementary sampling tools. Fish Bull. 2012;

110:332–343.

9. Mitchell WA, Kellison GT, Bacheler NM, Potts JC, Schobernd CM, Hale LF. Depth-related distribution of

pos-tjuvenile red snapper in southeastern U.S. Atlantic Ocean waters: ontogenic patterns and implica-

tions for management. Mar Coast Fish. 2014; 6:142–155.

10. Whitfield PE, Muñoz RC, Buckel CA, Degan BP, Freshwater DW, Hare JA. Native fish community struc-

ture and Indo-Pacific lionfish Pterois volitans densities along a depth-temperature gradient in Onslow

Bay, North Carolina, USA. Mar Ecol Prog Ser. 2014; 509:241–254.

11. Willis TJ, Babcock RC. A baited underwater video system for the determination of relative density of car-

nivorous reef fish. Mar Freshw Res. 2000; 51:755–763.

PLOS ONE Low recruitment of red porgy

PLOS ONE | https://doi.org/10.1371/journal.pone.0286078 July 5, 2023 21 / 24

https://doi.org/10.1371/journal.pone.0286078


12. Bacheler NM, Schobernd ZH, Gregalis KC, Schobernd CM, Teer BZ, Gillum Z, et al. Patterns in fish bio-

diversity associated with temperate reefs on the southeastern US continental shelf. Mar Biodivers.

2019; 49:2411–2428.

13. Grimes CB, Manooch CS, Huntsman GR. Reef and rock outcropping fishes in the outer continental

shelf of North Carolina and South Carolina, and ecology notes on the red porgy and vermilion snapper.

Bull Mar Sci. 1982; 32:277–289.

14. Manooch CS III, Hassler WW. Synopsis of biological data on the red porgy, Pagrus pagrus (Linnaeus).

NOAA Tech Rep NMFS Circular 412. 1978. Available from: https://www.fao.org/3/ap922e/ap922e.pdf.

15. Vaughan DS, Huntsman GR, Manooch CS III, Rhode FC, Ulrich GF. Population characteristics of the

red porgy, Pagrus pagrus, stock of the Carolinas. Bull Mar Sci. 1992; 50:1–20.

16. Vaughan DS, Prager MH. Severe decline in abundance of the red porgy (Pagrus pagrus) population off

the southeastern United States. Fish Bull. 2002; 100:351–375.

17. SEDAR. SEDAR 60 South Atlantic red porgy stock assessment report. North Charleston: SEDAR;

2020. Available from: https://sedarweb.org/documents/sedar-60-stock-assessment-report-south-

atlantic-red-porgy/.

18. Smart TI, Bubley WJ, Glasgow DM, Reichert MJM. Spatial distribution changes and habitat use in red

porgy in waters off the Southeast U.S. Atlantic coast. Marine Coast Fish. 2020; 12:381–394.

19. Shertzer KW, Williams EH. Fish assemblages and indicator species: reef fishes off the southeastern

United States. Fish Bull. 2008; 106:257–269.

20. Steward DN, Paxton AB, Bacheler NM, Schobernd CM, Mille K, Renchen J, et al. Quantifying spatial

extents of artificial versus natural reefs in the seascape. Front Mar Sci. 2022; 9:980384.

21. Schobernd CM, Sedberry GR. Shelf-edge and upper-slope reef fish assemblages in the South Atlantic

Bight: habitat characteristics, spatial variation, and reproductive behavior. Bull Mar Sci. 2009; 84:67–

92.

22. Bacheler NM, Schobernd ZH, Berrane DJ, Schobernd SM, Mitchell WA, Teer BZ, et al. Spatial distribu-

tion of reef fish species along the southeast US Atlantic coast inferred from underwater video survey

data. PLoS ONE. 2016; 11:e0162653. https://doi.org/10.1371/journal.pone.0162653 PMID: 27655268

23. Bacheler NM, Schobernd ZH, Berrane DJ, Schobernd CM, Mitchell WA, Geraldi NR. When a trap is not

a trap: converging entry and exit rates and their effect on trap saturation of black sea bass (Centropristis

striata). ICES J Mar Sci. 2013; 70:873–882.

24. Bacheler NM, Gillum ZD, Gregalis KC, Pickett EP, Schobernd CM, Schobernd ZH, et al. Comparison of

video and traps for detecting reef fishes and quantifying species richness in the continental shelf waters

of the southeast USA. Mar Ecol Prog Ser. 2022; 698:111–123.

25. Schobernd ZH, Bacheler NM, Conn PB. Examining the utility of alternative video monitoring metrics for

indexing reef fish abundance. Can J Fish Aquat Sci. 2014; 71:464–471.

26. Ellis DM, DeMartini EE. Evaluation of a video camera technique for indexing abundances of juvenile

pink snapper, Pristipomoides filamentosus, and other Hawaiian insular shelf fishes. Fish Bull. 1995;

93:67–77.

27. Campbell MD, Pollack AG, Gledhill CT, Switzer TS, DeVries DA. Comparison of relative abundance

indices calculated from two methods of generating video count data. Fish Res. 2015; 70:125–133.

28. Bacheler NM, Gillum ZD, Gregalis KC, Pickett EP, Schobernd CM, Schobernd ZH, et al. Spatial pat-

terns in relative abundance and habitat use of adult gray snapper off the southeastern coast of the

United States. Mar Coast Fish. 2020; 12:205–219.

29. Bacheler NM, Berrane DJ, Mitchell WA, Schobernd CM, Schobernd ZH, Teer BZ, et al. Environmental

conditions and habitat characteristics influence trap and video detection probabilities for reef fish spe-

cies. Mar Ecol Prog Ser. 2014; 517:1–14.

30. Wood SN. Generalized additive models: an introduction with R. Boca Raton: Chapman & Hall/CRC;

2006.

31. Hastie TJ, Tibshirani RJ. Generalized additive models. London: Chapman & Hall; 1990.

32. Bacheler NM, Smart TI. Multi-decadal decline in reef fish abundance and species richness in the south-

east USA assessed by standardized trap catches. Mar Biol. 2016; 163:26.

33. Neter J, Wasserman W, Kutner MH. Applied linear regression models. 2nd ed. Homewood: Irwin;

1989.

34. R Core Team. R: A language and environment for statistical computing. Vienna; R Foundation for Sta-

tistical Computi ng; 2021. Available from: https: //www.R-project.org/.

35. Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semipara-

metric generalized linear models. J R Stat Soc B Stat Methodol. 2011; 73:3−36.

PLOS ONE Low recruitment of red porgy

PLOS ONE | https://doi.org/10.1371/journal.pone.0286078 July 5, 2023 22 / 24

https://www.fao.org/3/ap922e/ap922e.pdf
https://sedarweb.org/documents/sedar-60-stock-assessment-report-south-atlantic-red-porgy/
https://sedarweb.org/documents/sedar-60-stock-assessment-report-south-atlantic-red-porgy/
https://doi.org/10.1371/journal.pone.0162653
http://www.ncbi.nlm.nih.gov/pubmed/27655268
https:
http://www.R-project.org/
https://doi.org/10.1371/journal.pone.0286078


36. Burnham KP, Anderson DR. Model selection and multimodel inference: A practical information-theoretic

approach. 2nd ed. New York: Springer; 2002.

37. Ahrens RNM, Allen MS, Walters C, Arlinghaus R. Saving large fish through harvest slots outperforms

the classical minimum-length limit when the aim is to achieve multiple harvest and catch-related fisher-

ies objectives. Fish Fish. 2020; 21:483–510.

38. Potts JC, Manooch CS III. Estimated ages of red porgy (Pagrus pagrus) from fishery-dependent and

fishery-independent data and a comparison of growth parameters. Fish Bull. 2002; 100:81–89.

39. Wyanski DM, Kolmos KJ, Bubley WJ. Update of red porgy, Pagrus pagrus, reproductive life history from

the MARMAP/SERFS program. North Charleston: SEDAR60-WP02; 2019. Available from: https://

sedarweb.org/documents/s60wp02-update-of-red-porgy-pagrus-pagrus-reproductive-life-history-from-

the-marmap-serfs-program-1-10-2020/.

40. Bacheler NM, Ballenger JC. Decadal-scale decline of scamp (Mycteroperca phenax) abundance along

the southeast United States Atlantic coast. Fish Res. 2018; 204:74–87.

41. Thorson JT, Barnett LAK. Comparing estimates of abundance trends and distribution shifts using sin-

gle- and multispecies models of fishes and biogenic habitat. ICES J Mar Sci. 2017; 74:1311–1321.

42. Thorson JT. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package

in stock, ecosystem, habitat and climate assessments. Fish Res. 2019; 210:143–161.

43. Wade KJ, Shertzer KW, Craig JK, Williams EH. Correlations in recruitment patterns of Atlantic reef

fishes off the southeastern United States based on multi-decadal estimates from stock assessments.

Reg Stud Mar Sci. 2023; 57:102736.

44. Beamish RJ, McFarlane GA, Benson A. Longevity overfishing. Progr Oceanogr. 2006; 68:289–302.

45. Pierce RB. Long-term evaluations of length limit regulations for northern pike in Minnesota. N Am J Fish

Manag. 2010; 30:412–432.

46. Alonzo SH, Mangel M. The effects of size-selective fisheries on the stock dynamics of and sperm limita-

tion in sex-changing fish. Fish Bull. 2004; 102:1–13.

47. Gascoigne J, Lipcius RN. Allee effects in marine systems. Mar Ecol Prog Ser. 2004; 269:49–59.

48. Morley JW, Batt RD, Pinsky ML. Marine assemblages respond rapidly to winter climate variability. Glob

Change Biol 2017; 23:2590–2601. https://doi.org/10.1111/gcb.13578 PMID: 27885755

49. Craig JK, Kellison GT, Binion-Rock SM, Regan SD, Karnauskas M, Lee SK, et al. Ecosystem status

report for the U.S. South Atlantic region. NOAA Tech Memo. 2021; NMFS-SEFSC-753. Available from:

https://repository.library.noaa.gov/view/noaa/33280.

50. Muñoz RC, Currin CA, Whitfield PE. Diet of invasive lionfish on hard bottom reefs of the Southeast

USA: insights from stomach contents and stable isotopes. Mar Ecol Prog Ser. 2011; 432:181–193.

51. Spanik KR, Smart TI, Reichert MJM, Darden TL. Using DNA barcoding to improve taxonomic resolution

of the diet of red snapper (Lutjanus campechanus) along the Atlantic coast of the southeastern United

States. Fish Bull. 2021; 119:123–134.

52. Ryan KL, Desfosses CJ, Denham AM, Taylor SM, Jackson G. Initial insights on the impact of COVID-

19 on boat-based recreational fishing in Western Australia. Mar Policy. 2021; 132:104646. https://doi.

org/10.1016/j.marpol.2021.104646 PMID: 34602712

53. Trudeau A, Beardmore B, Gerrish GA, Sass GG, Jensen OP. Social fish-tancing in Wisconsin: the

effects of the covid-19 pandemic on statewide license sales and fishing effort in northern inland lakes. N

Am J Fish Manag. 2022; 42:1530–1540.

54. Howarth A, Jeanson AL, Abrams AEI, Beaudoin C, Mistry I, Berberi A, et al. COVID-19 restrictions and

recreational fisheries in Ontario, Canada: preliminary insights from an online angler survey. Fish Res.

2021; 240:105961. https://doi.org/10.1016/j.fishres.2021.105961 PMID: 36540896

55. Bunt CM, Jacobson B. The impact of the COVID-19 pandemic on a recreational rainbow trout (Oncor-

hynchus mykiss) fishery. Environ Biol Fish. 2022; 105:499–507.

56. Rudershausen PJ, Buckel JA, Williams EH. Discard composition and release fate in the snapper and

grouper commercial hook-and-line fishery in North Carolina, USA. Fish Manag Ecol. 2007; 14:103–113.

57. Overton AS, Zabawski J, Riley KL. Release mortality of undersized fish from the snapper-grouper com-

plex off the North Carolina coast. N Am J Fish Manag. 2008; 28:733–739.

58. Geraldi NR, Kellison GT, Bacheler NM. Climate indices, water temperature, and fishing predict broad

scale variation in fishes on temperate reefs. Front Mar Sci. 2019; 6:30.

59. Murray J, Hjort J. The depths of the ocean. London: Maxmillan and Company; 1912.

60. Wheeler A. The fishes of the British Isles and north-west Europe. London: MacMillan and Company;

1969.

PLOS ONE Low recruitment of red porgy

PLOS ONE | https://doi.org/10.1371/journal.pone.0286078 July 5, 2023 23 / 24

https://sedarweb.org/documents/s60wp02-update-of-red-porgy-pagrus-pagrus-reproductive-life-history-from-the-marmap-serfs-program-1-10-2020/
https://sedarweb.org/documents/s60wp02-update-of-red-porgy-pagrus-pagrus-reproductive-life-history-from-the-marmap-serfs-program-1-10-2020/
https://sedarweb.org/documents/s60wp02-update-of-red-porgy-pagrus-pagrus-reproductive-life-history-from-the-marmap-serfs-program-1-10-2020/
https://doi.org/10.1111/gcb.13578
http://www.ncbi.nlm.nih.gov/pubmed/27885755
https://repository.library.noaa.gov/view/noaa/33280
https://doi.org/10.1016/j.marpol.2021.104646
https://doi.org/10.1016/j.marpol.2021.104646
http://www.ncbi.nlm.nih.gov/pubmed/34602712
https://doi.org/10.1016/j.fishres.2021.105961
http://www.ncbi.nlm.nih.gov/pubmed/36540896
https://doi.org/10.1371/journal.pone.0286078


61. Manooch CS III. A study of the taxonomy, exploitation, life history, ecology and tagging of the red porgy,

Pagrus pagrus Linnaeus off the Carolinas. Ph.D. Dissertation, North Carolina State University. 1975.

62. Rindone RR, Kellison GT, Bortone SA. Data availability for red snapper in Gulf of Mexico and southeast-

ern U.S. Atlantic Ocean waters. N Am J Fish Manag. 2015; 35:191–204.

PLOS ONE Low recruitment of red porgy

PLOS ONE | https://doi.org/10.1371/journal.pone.0286078 July 5, 2023 24 / 24

https://doi.org/10.1371/journal.pone.0286078

